반응형 고차미분2 33단계) 뉴턴 방법 최적화 자동화 , 2차 미분 자동 계산 이전 단계에서 고차 미분을 가능하게 DeZero를 확장시켰으므로 이번 단계에서는 실제로 2차 미분을 계산한 후, 뉴턴방법을 이용한 최적화를 해볼 것이다. 1. 2차 미분 계산하기 import numpy as np from dezero import Variable def f(x): y = x**4 - 2 * x**2 return y x = Variable(np.array(2.0)) y = f(x) #첫 번째 역전파 진행 y.backward(create_graph=True) print(x.grad) #variabe(24.0) #두 번째 역전파 진행 gx = x.grad gx.backward() print(x.grad) #variable(68.0) gx.backward()를 하여 gx.grad = None이니.. 2021. 7. 9. 30~32단계) 고차 미분 DeZero는 1차 미분에 한해서 미분을 자동으로 계산할 수 있다. 이번 단계에서는 DeZero가 2차, 3차, 4차 등 고차 미분까지 자동으로 계산할 수 있도록 확장할 것이다. 1. 현재 고차 미분을 할 수 없는 이유 foward계산과 달리 backward계산은 계산 그래프가 그려지지 않는다. 먼저 forward계산은 계산 그래프가 그려지는 것을 이해하기 위해 아래 Function클래스를 보자. class Function: def __call__(self, *inputs): inputs = [as_variable(x) for x in inputs] xs = [x.data for x in inputs] ys = self.forward(*xs) if not isinstance(ys, tuple): ys =.. 2021. 7. 9. 이전 1 다음 728x90 반응형